ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • View Item
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated analysis of color tissue Doppler velocity recordings of the fetal myocardium using a new algorithm

Permanent link
https://hdl.handle.net/10037/8922
DOI
https://doi.org/10.1186/s12947-015-0034-3
Thumbnail
View/Open
article.pdf (1.370Mb)
(PDF)
Date
2015-08-27
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Herling, Lotta; Johnson, Jonas; Ferm-Widlund, Kjerstin; Lindgren, Peter; Acharya, Ganesh; Westgren, Magnus
Abstract
Background: Tissue Doppler imaging (TDI) can be used to assess fetal cardiac function and it has been shown to detect changes associated with hypoxia in animal models. However, the analysis is cumbersome and time consuming. The main objective of this study was to evaluate the feasibility of a new algorithm developed for the automated analysis of color TDI velocity recordings of the fetal myocardium. Furthermore, we wanted to assess the effect of different sizes of region of interests (ROI) on the measurement of cardiac cycle time intervals and myocardial velocities at different gestations.

Methods: This study included analysis of 261 TDI velocity traces obtained from 17 fetal echocardiographic examinations performed longitudinally on five pregnant women. Cine-loops of fetal cardiac four chamber view were recorded with color overlay in TDI mode and stored for off-line analysis. ROIs of different sizes were placed at the level of the atrioventricular plane in the septum and in the right and left ventricular walls of the fetal heart. An automated algorithm was then used for the analysis of velocity traces.

Results: Out of the total 261 velocity traces, it was possible to analyze 203 (78 %) traces with the automated algorithm. It was possible to analyze 93 % (81/87) of traces recorded from the right ventricular wall, 82 % (71/87) from the left ventricular wall and 59 % (51/87) from the septum. There was a trend towards decreasing myocardial velocities with increasing ROI length. However, the cardiac cycle time intervals were similar irrespective of which ROI size was used.

Conclusions: An automated analysis of color TDI fetal myocardial velocity traces seems feasible, especially for measuring cardiac cycle time intervals, and has the potential for clinical application.

Description
License: Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)
Publisher
BioMed Central
Citation
Cardiovascular Ultrasound 2015, 13(1)
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (klinisk medisin) [1974]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)