ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for medisinsk biologi
  • Artikler, rapporter og annet (medisinsk biologi)
  • View Item
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for medisinsk biologi
  • Artikler, rapporter og annet (medisinsk biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Direct small RNA signatures in extracellular vesicles from breast cancer cell lines

Permanent link
https://hdl.handle.net/10037/10138
DOI
https://doi.org/10.1371/journal.pone.0161824
Thumbnail
View/Open
article.pdf (3.740Mb)
(PDF)
Date
2016-08-31
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Fiskaa, Tonje; Knutsen, Erik; Nikolaisen, Malene; Jørgensen, Tor Erik; Johansen, Steinar Daae; Perander, Maria; Seternes, Ole Morten
Abstract
Breast cancer is a heterogeneous disease, and different subtypes of breast cancer show distinct cellular morphology, gene expression, metabolism, motility, proliferation, and metastatic potential. Understanding the molecular features responsible for this heterogeneity is important for correct diagnosis and better treatment strategies. Extracellular vesicles (EVs) and their associated molecules have gained much attention as players in intercellular communication, ability to precondition specific organs for metastatic invasion, and for their potential role as circulating cancer biomarkers. EVs are released from the cells and contain proteins, DNA, and long and small RNA species. Here we show by high-throughput small RNA-sequencing that EVs from nine different breast cancer cell lines share common characteristics in terms of small RNA content that are distinct from their originating cells. Most strikingly, a highly abundant small RNA molecule derived from the nuclear 28S rRNA is vastly enriched in EVs. The miRNA profiles in EVs correlate with the cellular miRNA expression pattern, but with a few exceptions that includes miR-21. This cancer-associated miRNA is retained in breast cancer cell lines. Finally, we report that EVs from breast cancer cell lines cluster together based on their small RNA signature when compared to EVs derived from other cancer cell lines. Altogether, our data demonstrate that breast cancer cell lines manifest a specific small RNA signature in their released EVs. This opens up for further evaluation of EVs as breast cancer biomarkers.
Publisher
Public Library of Science
Citation
PLoS ONE 2016, 11(8)
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (medisinsk biologi) [1103]
  • Artikler, rapporter og annet (farmasi) [394]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)