ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • Vis innførsel
  •   Hjem
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying anti-TNF response biomarkers in ulcerative colitis using a diffusion-based signalling model

Permanent lenke
https://hdl.handle.net/10037/24185
DOI
https://doi.org/10.1093/bioadv/vbab017
Thumbnail
Åpne
article.pdf (555.0Kb)
Publisert versjon (PDF)
Dato
2021-08-18
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Singh, Amrinder; Anderssen, Endre; Fenton, Christopher Graham; Paulssen, Ruth H
Sammendrag

Motivation: Resistance to anti-TNF therapy in subgroups of ulcerative colitis (UC) patients is a major challenge and incurs significant treatment costs. Identification of patients at risk of nonresponse to anti-TNF is of major clinical importance. To date, no quantitative computational framework exists to develop a complex biomarker for the prognosis of UC treatment. Modelling patient-wise receptor to transcription factor (TF) network connectivity may enable personalized treatment.

Results: We present an approach for quantitative diffusion analysis between receptors and TFs using gene expression data. Key TFs were identified using pandaR. Network connectivities between immune-specific receptor-TF pairs were quantified using network diffusion in UC patients and controls. The patient-specific network could be considered a complex biomarker that separates anti-TNF treatment-resistant and responder patients both in the gene expression dataset used for model development and separate independent test datasets. The model was further validated in rheumatoid arthritis where it successfully discriminated resistant and responder patients to tocilizumab treatment. Our model may contribute to prognostic biomarkers that may identify treatment-resistant and responder subpopulations of UC patients.

Availability and implementation: Software is available at https://github.com/Amy3100/receptor2tfDiffusion.

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

Er en del av
Singh, A. (2022). Falsifiable Network Models. A Network-based Approach to Predict Treatment Efficacy in Ulcerative Colitis. (Doctoral thesis). https://hdl.handle.net/10037/27393
Forlag
Oxford University Press
Sitering
Singh A, Anderssen E, Fenton CG, Paulssen RH. Identifying anti-TNF response biomarkers in ulcerative colitis using a diffusion-based signalling model. Bioinformatics Advances. 2021;1(1)
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (klinisk medisin) [1974]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring